欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

宇宙有多大?宇宙边缘是什么?

编辑: 路逍遥 关键词: 宇宙探索 来源: 逍遥右脑记忆

宇宙有多大?科学家试图利用现有科学技术水平对其进行测量。然而,宇宙的宽度及深度到底有多少?宇宙边缘到底在哪里?至今,科学家们仍然无法进行精确测量,甚至我们以为的边缘,也仅仅是我们能够探知的极限,并不代表宇宙真正的界限。

宇宙到底有多大?可视直径至少920亿光年
 据国外媒体报道,宇宙到底有多大?这个问题似乎和宇宙年龄有多少一样令人捉摸不透,美国宇航局的哈勃太空望远镜彻底改变了我们对宇宙的认。随着天文观测技术的发展,科学家已经能观测到宇宙大爆炸后7亿年左右的早期天体,望远镜就如同一台时间机器,可以看到过去的“情景”,那么宇宙有多大呢?科学家认为宇宙有多大无法用数字来形容。
  
  目前可观测的宇宙年龄大约为138.2亿年,由于时空距离和光速之间的关系,意味着我们宇宙的直径将是138.2亿光年的倍数,如果按138.2亿光年估算,并考虑宇宙加速膨胀,那么我们的宇宙的可视半径会达到460亿光年,这意味着宇宙直径在920亿光年。
  
  在观测宇宙时,我们似乎总以观察者为中心的角度看宇宙,这就像一艘在地球表面大洋中航行的轮船,如何确定宇宙到底有多大?!从另一个角度看,我们无法看到宇宙的边缘并不意味着我们处于宇宙的中心,我们可能处于大爆炸与宇宙边缘中间的位置,这样就可以推出宇宙可视半径在460亿光年。
  
  科学家认为宇宙的大小取决于它的形状,目前的宇宙理论认为宇宙可能是一个球体,类似马鞍状的负弯曲形状,该理论源于宇宙大爆炸理论,整个宇宙的外形如同一个吹起的气球,我们则生活在宇宙的“表面”。
  
  同时,科学家也认为宇宙是平坦的,根据美国宇航局的调查,宇宙可能是平坦而无限的,2013年的调查发现如果宇宙是平坦的,那么误差只有0.4%。

宇宙有多大,人类有多小看完这些你也许就懂了



和旁边几个比比,也算是大的




和俩远的一比,差距啊

还有俩大的


咳咳,大哥来了


天狼星。。。好大


对不起,还有更大的呢,地球只剩下一像素了


楼主怕伤了地球人的心












  1 宇宙的尺度

宇宙的尺度我们并非居于宇宙的中心,但是我们确实居于可观测宇宙的中心,这是一个直径约为930亿光年的球体

  这个星球上没有人知道宇宙究竟有多大。它或许是无限的,也或许它确实拥有某种边界,也就是说如果你旅行的时间足够长,你最终将回到你出发的地方,就像在地球上那样,类似在一个球体的表面旅行。

  科学家们对于宇宙具体的形状和大小数据存在分歧,但是至少对于一点他们可以进行非常精确的计算,那就是我们可以看得多远。真空中的光速是一个定值,那么由于宇宙自诞生以来大约为137亿年,这是否就意味着我们最远只能看到137亿光年远的地方呢?

  答案是错误的。有关这个宇宙的最奇特性质之一便是:它是不断膨胀的。并且这种膨胀几乎可以以任何速度进行——甚至超过光速。这就意味着我们所能观测到的最远的天体事实上远比它们实际来的近。随着时间流逝,由于宇宙的整体膨胀,所有的星系将离我们越来越远,直到最终留给我们一个一片空寂的空间。

  奇异的是,这样的结果是我们的观测能力事实上被“强化”了,事实上我们所能观察到最遥远的星系距离我们的距离达到了460亿光年。我们并非居于宇宙的中心,但是我们确实居于可观测宇宙的中心,这是一个直径约为930亿光年的球体。

  2 充斥着星系

这张照片是美国宇航局哈勃空间望远镜获得的最深邃的影像之一

  这张照片是美国宇航局哈勃空间望远镜获得的最深邃的影像之一。科学家们让哈勃望远镜对准天空中的一小块区域进行长时间的曝光——长达数月,尽可能地捕获每一个暗弱的光点。文中上图是局部的放大,完整的图像是下面这幅图,其中包含有1万个星系,从局部放大图中,你可以看到一些星系的细节。

完整的图像

  当你看着这些遥远的星系,你可能没有意识到自己正在遥望遥远的过去,你所看到的这些星系都是它们在130亿年前的样子,那几乎是时间的尽头。如果你更喜欢空间的描述,那么这些星系离开我们的距离是300亿光年。

  宇宙处于不断的膨胀之中,但与此同时科学家们对于宇宙尺度的测量精度也在不断提高。他们很快找到了一种绝佳的描述宇宙中遥远天体距离的方法。由于宇宙在膨胀,在宇宙中传播的光线的波长将被拉伸,就像橡皮筋被拉长一样。光是一种电磁波,对于它而言,波长变长意味着向波谱中的红光波段靠近。于是天文学家们使用“红移”一词来描述天体的距离,简单的说,就是描述光束从天体发出之后在空间中经历了多大程度的膨胀拉伸。一个天体的距离越远,当然它在传播的过程中光波波长被拉伸的幅度越大,光线也就越红。

  如果使用这种描述方法,那么你可以说这些遥远的星系的距离大约是红移值Z=7.9,天文学家们立刻就会明白你所说的距离尺度。

  3 最遥远的天体

最遥远的天体

  这张图像中间部位那个不太显眼的红色模糊光点事实上是一个星系,这是人类迄今所观测到的最遥远天体。美国宇航局哈勃空间望远镜拍摄了这张照片,这一星系存在的时期距离宇宙大爆炸仅有4.8亿年。

  这一星系的红移值约为10,这相当于距离地球315亿光年。看起来这一星系似乎非常孤单,在它的周围没有发现与它同时期的星系存在。这和大爆炸之后大约6.5亿年时的情景形成鲜明对比,在那一时期,天文学家们已经找到大约60个星系。这说明尽管这短短2亿年对于宇宙而言仅仅是一眨眼的功夫,但是正是在这一短暂的时期内,小型星系大量聚合形成了大型的星系。

  但是这里需要指出的是,天文学家们目前尚未能完全确认这一天体的距离数值,这也就意味着其实际距离可能要比现在所认为的更近。在美国宇航局的下一代詹姆斯·韦伯空间望远镜发射升空以替代哈勃望远镜之前,科学家们都将不得不在数据不足的情况下进行估算。

  4 最遥远的距离

最遥远的距离

  天文学家能够观测到的最遥远的光线名为“宇宙微波背景辐射”(CMB)。这是抵达地球的最古老的光子,它们几乎诞生于宇宙大爆炸发生的时刻。在大爆炸发生后的短时间内,宇宙非常小,因此相当拥挤,物质太过稠密,以至于光线无法长距离传播。

  但在宇宙诞生之后大约38万年之后,宇宙已经变得足够大,光线第一次可以自由地传播。这时发出的光是我们今天所能观测到的最古老的光线,是宇宙的第一缕曙光;它存在于宇宙的每一个方向,无论你把望远镜指向哪个方向,都可以观测到它的存在。宇宙微波背景辐射就像一堵墙,我们最远也只能看到墙这一侧的风景,但是却绝无办法穿墙而过。

  那么这些最初的宇宙之光怎么变成微波了呢?这还是因为宇宙的膨胀。随着宇宙的膨胀,当时发出的光波波长被逐渐拉长,经历如此久远的时间(137亿年),它们的波长已经被拉伸到了不可思议的程度。随着宇宙膨胀冷却,现在这一辐射的剩余温度大约仅有-270摄氏度,也就是著名的3K背景辐射。这种辐射的分布显示出惊人地各向同性,各处的差异小于10万分之一。

  而如果有朝一日人类终于能够制造出高灵敏度的中微子探测器,那么我们将终于可以突破宇宙微波背景辐射设置的那堵墙,而看到其背后中微子出现时的情景,即所谓的“宇宙中微子背景”。和光子不同,对中微子而言,一般意义上的物质几乎是透明的,它们可以轻而易举地穿过地球,穿过太阳,甚至穿过整个宇宙。正是因为这一特征,一旦我们能够解码中微子中携带的信息,我们将能回溯到宇宙大爆炸之后仅数秒时的情景。

  5 星系蝴蝶图

星系蝴蝶图

  天文学家们向宇宙张望,他们注意到宇宙中的星系分布并非呈现随机状态,由于引力的作用,星系倾向于相互接近,从而形成规模巨大的聚合体,如星系团,超星系团,大尺度片状结构乃至所谓的巨壁。

  天文学家们开始着手纪录这些星系在三维空间中的位置,他们很快成功地制作出较近距离范围内星系的三维分布图,这是一项令人惊叹的成就。大部分此类巡天观察都将注意力集中在距离地球70亿光年之内的范围,但他们在此过程中也发现了许多类星体,这是宇宙中亮度惊人的奇特天体,来自早期宇宙,其距离可能是70亿光年范围的4倍以上。

  在全部这些努力中,斯隆数字巡天(SDSS)可能算是规模最大的一个。参与这一项目的天文学家们目前已经基本完成对1/3天空的巡天观察,并在此过程中记录下超过5亿个天体的精确位置信息。而本文此处的配图则来自另一项巡天计划:6dF星系巡天,这是目前规模位居第三的巡天项目。这张图像中之所以会缺失很多地方,是因为银河系的阻挡,很多天区我们都无法进行观测。

  6 邻近的超星系团

邻近的超星系团

  在距离地球比较近的空间内,天文学家们的了解相对而言就会多一些。我们现在知道在距离地球约10亿光年的距离内存在一个超星系团的海洋。这些是被引力作用聚集在一起的大量成员星系。

  我们的银河系本身是室女座超星系团的成员,这个超星系团正位于这张图像中中央位置。在这个巨大的超星系团结构中,我们的银河系毫无特别之处,它只是位于一隅之地的普通成员星系而已。在这一宏伟结构中占据统治地位的是室女座星系团,这是一个由超过1300个成员星系组成的庞大集团,其直径超过5400万光年。

  另一个超星系团很值得关注,那就是后发座超星系团,因为它的位置恰好位于北方巨壁(Northern Great Wall)的中心位置。北方巨壁是一个大到令人难以想象的巨型结构,其直径约有5亿光年,宽度约3亿光年。我们星系“附近”最大的超星系团是时钟座超星系团,其直径超过5亿光年。

  7 暗物质和暗能量

暗物质和暗能量

  这个宇宙另外一件令人吃惊的事实是:占据宇宙大部分的成分我们却完全看不到。暗物质是一种神秘的存在,科学家们认为它们遍布宇宙各处,但是我们却看不到也摸不着。它们和光以及任何种类的电磁波都不发生作用,而这正是人类赖以探测宇宙的基础工具。不过它会产生引力,通过它对周遭空间施加的引力效应,科学家们能够感受到它们的存在。

  是的,我们能够感觉到暗物质确实存在。比如我们所在的室女座超星系团大约拥有10的15次方倍太阳质量,但是整个超星系团的光度却仅有太阳的3万亿倍。这就意味着室女座超星系团的光度相比其质量所应当拥有的光度小了约300倍。这样的事实是难以解释的,但是如果考虑到这其中遍布大量拥有质量但却不发光的暗物质,一切也就不奇怪了。

  事实上,根据计算结果,宇宙中的暗物质含量是我们平常所见的普通物质的5倍。但是暗物质尽管强大,却仍然不足以统治宇宙。真正支配着我们这个宇宙的力量来自另一种神秘物质:暗能量。普通物质和暗物质有一个共同点,那就是它们都拥有质量,并向周围空间施加引力影响,换句话说,它们的作用是让物质聚拢,让宇宙减速膨胀甚至最终收缩。然而,当科学家们观测宇宙,试图分辨出宇宙究竟是在减速膨胀还是在收缩时,他们惊骇地发现事实完全出乎他们的预料——宇宙根本没有收缩或减速,它正在加速膨胀!毫无疑问,存在一种未知的强大到异乎寻常的力量,它不但独力抵抗了整个宇宙中所有普通物质和暗物质产生的引力作用,甚至还推动整个宇宙加速膨胀。对于暗能量的发现最近刚刚被授予了今年的诺贝尔物理学奖,但是尽管有了这样的巨大进展,科学家们对于究竟什么是暗能量却依旧毫无头绪,一无所知。现在有关这一课题的理论几乎就相当于“虚位以待”,等待着未来出现一个更加完美的理论能摘取成功解释暗能量本质的桂冠。

  8 宇宙之网

宇宙之网

  星系巡天的结果显示我们的宇宙似乎显示一种“泡沫网状”结构。几乎所有的星系都分布在狭窄的“纤维带”上,而在它们的中间则是巨大的空洞,天文学上称为“巨洞”。这些巨洞的体积巨大,有些直径可达3亿光年,其中几乎空无一物。但是这样说并不正确,因为尽管我们看上去那里确实是什么也没有,但实际上这里充斥着暗物质。

  这里这张图是一份计算机模拟结果,它显示我们的宇宙呈现一种纤维网状结构,其中分布着节点,纤维带和层。这种复杂结构的起源来自宇宙微波背景辐射中微小的涟漪,这是其中密度微小变化的体现。随着宇宙膨胀,这些微小的高密度区去逐渐吸引更多的物质向其聚集,这种效应持续上百亿年,其结果是惊人的——它造就了我们今天所见的宇宙。

  9 检验宇宙模型

检验宇宙模型

  2005年,一个国际天文学家小组试图检验现有的宇宙学理论是否正确。他们进行了一项名为“千年运行”的模拟计划,在计算机中他们模拟100亿个粒子在一个边长为20亿光年的立方体空间中,按照我们现有的理论去作用于它们,是否能得到某种我们所预期的结果。

  这项模拟实验中考虑了普通物质,暗物质和暗能量因素,成功地再现出宇宙从混沌逐渐显现类似于我们今天所观察到的宇宙大尺度结构。在模拟运行的过程中,研究人员们目睹了宇宙中大质量黑洞的出现,强大的类星体发出剧烈的辐射,模拟的结果中还出现了大约2000万个星系。正如文中此处展示的那样,研究人员们发现模拟的结果产生出一个和我们所观察到的现实宇宙非常相似的状态。

宇宙究竟有没有边缘?宇宙的尽头在何方?

 在人类初识宇宙的时候,人们认为太阳系便是宇宙的中心。随后,人们又认为太阳系所属的银河系就是整个宇宙。在1900年,人们估算宇宙宽度大约为2万光年,大约有至多30亿颗恒星!现在看来,我们又错了,宇宙究竟有多大尚未可知?


  1920年,天文学家哈洛.沙普利等人根据当时掌握的测量恒星距离的新方法,算出了银河的真实宽度是10万光年,其中包含的恒星总数达2000--3000亿颗。同20年前的看法相比,银河“扩大”了100倍,而且还断定这极度扩大的银河,并不是全部宇宙。

  与此同时,天文学家又发现宇宙是由许多个像银河系一样的星系集成的,每个星系大约由几十亿至几万亿颗星体组成。而且证明了宇宙是动态的,成群存在的星系彼此相互分离,它们之间的距离越来越大,好像宇宙也在不断扩大。

  1929年,美国天文学家埃德.P.哈勃等人设计出了确定星系距离的多种方法,证明即使是离我们比较近的星系(例如仙女星座系),距离我们也有230万光年。按照宇宙诞生之后就急速扩大的宇宙模型,可以计算出宇宙的年龄为138.2亿年。

  认识宇宙是一个艰难的过程。当我们抬头仰望星空时,所看到的总是有限。人类几千年来,总在孜孜不倦地探求,积累了不少知识,了解到宇宙的知识也越来越多。不过,到目前为止,也还没有足够地认识到宇宙的庐山真面目。

人类能否到达宇宙边缘? 缺乏探索外太空发射场

  当我们望向外太空时,我们便会立即明白这个空间里蕴藏着许多我们至今为探索的奥秘。事实上,太空科学家们正不遗余力证明这点,在这个广阔无垠的世界上,许多发现都始终证明有一些我们至今为探索的事情。
  
  但是能否到达太空边缘这一话题,始终是对科学家来说最复杂的谜题,这个世界的边界是哪里?太空的边缘在哪里?我们什么时候能够到达那里?
  
  但是,在涉及任何其他细节之前,毫无疑问我们都要扪心自问,人类将从入侵太空和更准确的空间探索中获益哪些?
  
  自古以来,我们对太空一直很有兴趣,许多国家不遗余力,在太空探索上投入金钱,研究人员在空间科学上了有很多发现,例如太空监测中心。人造卫星用来探索星球等。然而现在,我们正处在一个以前人类感知未曾到达的时代。
  
  不仅如此,人类开始在外太空侵占活动,例如欧洲空间站,在月球和火星表面建造定居点。
  
  也许我们从征服太空所获得的最大好处是对太阳系有了更深一层的认识,从而确定我们在这个世界上的位置。探索其他生命的存在让我们超越了这个狭小的星球的范伟,但是科学家更加重视地球和太阳系的历史
  
  到达宇宙的更深处,这本身就是伟大动力,拥有和促进新技术发展,这最终是为了整体的利益。
  
  目前,科学家所面临的最重要的难题是缺乏探索外太空的发射场。任何探索宇宙空间新部分都要从地球开始,例如这本身就是美国航天局(NASA)试图解决的问题,可以通过目前国际空间站作为发射场,扩大太空工作空间。
  
  我们在以前的文章中提到过,“NASA”试图在火星上进行农耕,进而将其作为最前沿的空间站,进行更大的探索实践。
  
  现在,我们回到第一个问题,人类能否在近几十年内到达宇宙边缘?
  
  在戴夫•戈德宝博士发表的一份专门性的报告中上,他指出,如果人类想探索浩瀚宇宙的更深处,必须比现在的速度更快的进步。该博士是美国空间科学领域的一位专家,是著名的“后视镜下的世界”一书的作者。就目前人类所了解的程度,直到到达宇宙边缘的那一刻,还需要160亿光年。
  
  许多科学家仍然认为,到达宇宙边缘人类能够开启一个探索的其他视野,科学家们所公认的一点是“宇宙的活动”不是宇宙的尽头。
  
  到达宇宙边缘是不可能的,唯一的可能性是科学家发明一种比光速快好几十万倍速度的设备,但是没有任何设备可能达到那种速度,也没有任何人能够和该设备一起,因为没有任何人能承受那样快的速度。
  
  目前的事实指出,人类无法在近几十年内到达宇宙的边缘,但是谁知到,人类可能发展新的科学技术,使自己能够更迅速的达到目标


本文来自:逍遥右脑记忆 http://www.jiyifa.cn/tansuo/371231.html

相关阅读: